Semiparametric Estimation in Simultaneous Equations of Time Series Models

نویسندگان

  • Jiti Gao
  • Peter C. B. Phillips
چکیده

A system of vector semiparametric nonlinear time series models is studied with possible dependence structures and nonstationarities in the parametric and nonparametric components. The parametric regressors may be endogenous while the nonparametric regressors are strictly exogenous. The parametric regressors may be stationary or nonstationary and the nonparametric regressors are nonstationary time series. Semiparametric least squares (SLS) estimation is considered and its asymptotic properties are derived. Due to endogeneity in the parametric regressors, SLS is not consistent for the parametric component and a semiparametric instrumental variable least squares (SIVLS) method is proposed instead. Under certain regularity conditions, the SIVLS estimator of the parametric component is shown to be consistent with a limiting normal distribution. Interestingly, the rate of convergence in the parametric component depends on the properties of the regressors. It has been shown that the conventional rate– √ n is still achievable even when nonstationarity is involved in both the regressors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semiparametric Bootstrap Prediction Intervals in time Series

One of the main goals of studying the time series is estimation of prediction interval based on an observed sample path of the process. In recent years, different semiparametric bootstrap methods have been proposed to find the prediction intervals without any assumption of error distribution. In semiparametric bootstrap methods, a linear process is approximated by an autoregressive process. The...

متن کامل

Semiparametric Estimation in Time Series of Simultaneous Equations

A system of vector semiparametric nonlinear time series models is studied with possible dependence structures and nonstationarities in the parametric and nonparametric components. The parametric regressors may be endogenous while the nonparametric regressors are strictly exogenous and represent trends. The parametric regressors may be stationary or nonstationary and the nonparametric regressors...

متن کامل

An introduction to efficient estimation for semiparametric time series

We illustrate several recent results on efficient estimation for semiparametric time series models with two types of AR(1) models: having independent and centered innovations, and having general and conditionally centered innovations. We consider in particular estimation of the autoregression parameter, the stationary distribution, the innovation distribution, and the stationary density.

متن کامل

Generalized Ridge Regression Estimator in Semiparametric Regression Models

In the context of ridge regression, the estimation of ridge (shrinkage) parameter plays an important role in analyzing data. Many efforts have been put to develop skills and methods of computing shrinkage estimators for different full-parametric ridge regression approaches, using eigenvalues. However, the estimation of shrinkage parameter is neglected for semiparametric regression models. The m...

متن کامل

Evaluation of SARIMA time series models in monthly streamflow estimation in Idanak hydrometry station

prediction of hydrological variables is a highly effective tool in water resource management. One of the important tools for modeling hydrological processes is the use of time series modeling and analysis. River series production series can be used by time series models in various studies such as drought, flood, reservoir systems design and many other purposes For this purpose, monthly flow dat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010